
Identification of Nonlinear Discrete Systems
Based Enhanced Genetic Programming

Rami A. Maher, Mohammad J. Mohammad

Abstract— This paper introduces the application of the genetic
programming to solve the identification problems of nonlinear
discrete dynamic systems. The standard GP is enhanced first to be of
a Multi basis function structure and then by a general parameter
optimization technique to include one of four proposed techniques.
The efficiency of finding the numeric constant node is significantly
improved as compared to the traditional methods. The simulation
procedure includes first a comparison between the enhanced GP by
one of the parameter optimization techniques and the standard GP.
Then after for six different models, a comparison between the four
utilized techniques is performed. The comparison is made in terms of
the number of runs require to find the perfect model, and the average
number of generations for successful runs. Finally, a complicated
nonlinear discrete is selected to show the powerful of the proposed
algorithm.

Keywords- Identification, Nonlinear Discrete systems, Genetic
programming, Multi-base Function Genetic Programming MBFGP

I. INTRODUCTION

Identification of a nonlinear discrete dynamic system, which
is described by a difference nonlinear equation, represents the
mathematical model in many digital control systems or nonlinear
additive autoregressive models. Traditionally, there are various
model–based as well as non-based-model methods that identify
the mathematical model of these systems [1, 2]. Genetic
programming has been used extensively for identifying
continuous and rarely for discrete nonlinear systems [3, 4].

Genetic programming GP suffers the weakness and difficulty
in discovering useful numeric constants for the terminal nodes of
its program trees [5]. The difficulty with numeric constants stems
from their representation as tree nodes. The reproduction
crossover and mutation operations affect only the structure of
the tree and not the composition of the nodes. That is, the
individual numeric constants are not affected by reproduction
operations and hence cannot benefit from them.

Rami A. Maher is with the Isra University, Amman, Jordan,
rami.maher@iu.edu.jo while Mohammad J. Mohammad is with
the University Of Technology, Baghdad, Iraq, cse-
dept@oftechnology.edu.iq

There are two traditional ways of generating a new numeric
constant, the arithmetic combination and the arithmetic genesis.
Although these two ways are able to create a constant value, they
require a tedious computation and in most cases, they are not
enough efficient. Some of the early enhancements [6] consist of
including a small number of numeric constants and/or
ephemeral random constant ERC in the original terminal set. The
ERC is helpful because it provides many different numeric
constants in the initial generation. In spite of this, most problems
require a solution that uses numeric constant other than that in
the initial generation, and in turn; it requires evolving the tedious
arithmetic combination.

The demand for a more efficient GP is an important research
area; for instance, numerous modifications of the basic GP
parading are already known. Several researchers have
considered GP augmented by hill climbing, simulated annealing
and other stochastic techniques [7]. In this paper, four parameter
techniques are considered to develop an enhanced GP, which is
utilized to solve the identification problem of dynamic discrete
nonlinear systems. Therefore, a general procedure for calling the
desired technique is augmented with the standard GP to perform
an enhanced genetic programming algorithm. In [8, 9] a multi-
base function genetic programming MBFGP algorithm shows
excellent results in finding optimal controllers. Thus it is thought
to experiment with for identification problems.

II. MULTI BASIS FUNCTION GENETIC
PROGRAMMING MBFGP

This section is devoted to give a very brief discussion will
of the used enhanced genetic programming algorithm, which
will be used throughout this paper. There are five basic parts
constituting the tree structures of the MBFGP. These are:
i. Representation: The structures of program tree are

composed of a random number of linear and/or nonlinear
basis functions (terms), which are forced to be linear in
parameters. The general tree structure of MPFGP is
illustrated in Figure 8.1. As shown, the tree is divided into
two main parts. The head part is constructed from
independent (fixed) nodes set Σ, 𝑓𝑓, or 𝑅𝑅, and the tail part is
constructed from dependent (unfixed) nodes set. Figure 8.1
represents an example of such a tree structure of the MBFGP,
where three variables 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are related through the
multiplication, division and power operations and a sine
function.

ii. Initial population of the random tree: It must be
created by the syntactic rules of construction, and the value
for each numeric constant terminal node is chosen randomly
in a specified range. The end of the tree structure is bounded

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 204

by the parameter of the maximum creation depth, which is
specified by the user.

iii. Genetic operations: Two types of crossover operation
are implemented within MBFGP structures. These are the
internal operation which occurs in the tail part, and the
external operation, which occurs in the head part. Four types
of mutation operation are included. These are the swap,
shrink, inverse shrink, and the branch operations, which are
applied either to the head or tail parts of the parental tree
structure or both.

iv. Additional genetic operations: Besides the basic
genetic operations, additional operations are used to vary or
adapt the tree structures. Three operations are proposed, the
endowment, delete, and merging operations, which make
changes on the basis functions. In order to apply any of these
operations, random selection of two basis function of the
individual is performed.

v. Enhancement operations: To enhance the
performance of the MBFGP, five operations are proposed.
These are the nested function, structure sorting, enrichment,
numerical constant mutation, and contribution operations.
These operations are utilized to fulfill different tasks. For
example, the last operation is used to resolve the problem of
poor diversity of the basis functions.

The above-mentioned operations possess their special
programs, which are integrated within the general GP
algorithm; the reader can refer throughout the reference [9] for
more and detailed information. The use of a certain operation
may be either compulsory or problem dependent. Moreover,
within the proposed MBFGP algorithm, the numerical method
of the 4th order Runga-Kutta is applied to solve the dynamic
system of the considered problem.

III. PARAMETER OPTIMIZATION TECHNIQUES
For the purpose of this paper, four known parameter

optimization techniques are proposed. They are the numeric
constant mutation NCM, the gradient descent GD, the
simulated annealing SA, and the genetic algorithm GA. These
techniques have different stochastic concepts for finding the
numeric constant node values. A brief explanation is given
below.

1. Numeric Constant Mutation

 Numeric constant mutation: Initially, a certain range and
resolution are specified for the NC terminal node ℛ values
(say -10 to +10 and 10-3). In each individual, the number of
mutated numeric constant node is chosen randomly in a
certain range (say, 1 to 3) of cost surface dimension. Then
with equal probability, the mutation process is performed in
either of two methods. The first method, the new NC is
randomly taken from a certain uniform distributed selection
range, which is the old value plus or minus a certain
percentage of the total allowed range. In the second method, a
random selecting of the digit location is mutated in similar as
with the first method [8].

2. Gradient Descent (GD)

In an analogue way of updating the weights of a numeral
network, terminal constants can be adjusted using gradient
descent. However, various terminal constants are typically
random within a GP tree and are rarely adjusted by gradient
methods [7] because of the unavailability of derivatives and
computational expense. In principle, the gradient descent
search is applied to take a step on the cost surface from the
current parameter θ. The gradient of the cost is found as a
vector of partial derivative. At each generation all NC terminal
nodes are updated several times using the following rule

 𝜃𝜃𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜃𝜃𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 − 𝛼𝛼
𝜕𝜕
𝜕𝜕𝜃𝜃𝑘𝑘

�
1
𝑁𝑁�(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃)2

𝑁𝑁

𝑖𝑖=1

� (1)

where 𝛼𝛼 is a learning rate, 𝑥𝑥 is the vector of NC input
values, 𝑦𝑦 is the output vector of NC values, and 𝑓𝑓 is a scalar
unknown in advance function. However, finding the NC
values is done by gradient descent during the same time the
functional structures are evolved. Thus if 𝑛𝑛𝑗𝑗 (.) denotes node
functions, then

𝜕𝜕𝑓𝑓(𝑛𝑛1(𝑛𝑛2(𝑛𝑛3(…) …). .).)

𝜕𝜕𝜃𝜃𝑘𝑘
=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛1

𝜕𝜕𝑛𝑛1

𝜕𝜕𝑛𝑛2

𝜕𝜕𝑛𝑛2

𝜕𝜕𝑛𝑛1
…
𝜕𝜕𝑛𝑛𝑟𝑟(𝜃𝜃𝑘𝑘)
𝜕𝜕𝜃𝜃𝑘𝑘

 (2)

Therefore, differentiation of the tree is simply reduced to the
product of the node derivatives on the path, which starts at the
given NC and ends at the root.

3. Simulated Annealing (SA)
SA is a stochastic global search optimization approach

which does not require derivatives. The SA algorithm is
inspired by a physical thermal process called annealing, which
is used to obtain a minimum energy crystalline structure of the
metal [10]. The SA algorithm as a numeric parameter
optimizer has five basic features:
i. The Solution representation: It represents a set of NC

values that are optimized in a specified individual tree.
Assuming a certain range, say -10 to +10 with a
resolution 10-3 (it is 2001 code instances) and five
decimal digits for each value.

ii. The generation of a new solution: A new solution is
generated by perturbing a random number of NC of the
GP individual. The decimal code changes are performed
by randomly adding value to a randomly selected position
among the last three least significant decimal digits. This
operation respects the upper and lower limits of the
decimal code.

iii. The acceptance function: Let ∆𝑐𝑐 be the change of cost
function between the current state and new state. The
acceptance of new state is for ∆𝑐𝑐 < 0 or with a
probability of 𝑁𝑁−∆𝑐𝑐 𝑡𝑡⁄ , where 𝑡𝑡 is control parameter
(temperature).

iv. Cooling schedule: The proposed SA applies a geometric
Boltzmann annealing, which is simply be
effective, 𝑡𝑡𝑘𝑘+1 = 𝜆𝜆 𝑡𝑡𝑘𝑘 , 𝑘𝑘 = 0,1,2.. where 𝜆𝜆 is a constant in
the range 0.50-0.99.

v. The stopping criterion: The optimization process will be
stopped when the control parameter reaches a value less
than a pre-specified value.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 205

4. Genetic Algorithm (GA)

The proposed strategy is very similar conceptually to
gradient or SA technique. GA has the advantage of being
less local than the gradient descent technique and able to
produce better constant values even for that lie within the
region within the search space, which are well far apart
from present ones [11]. The GA includes the encoding of
NC tree, the generation of random initial population,
fitness evaluation, the selection of individuals to be
continued in the next generation, and the genetic
crossover and mutation operations.

IV. PROBLEM STATEMENT AND GP SOLUTION
Let us have a series of observed data

points (𝑘𝑘,𝑢𝑢(𝑘𝑘),𝑦𝑦(𝑘𝑘)), collected from a one dimension
discrete-time dynamic system that can be arranged in an array
form as

 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷: = �𝑘𝑘,𝑢𝑢(𝑘𝑘),𝑦𝑦(𝑘𝑘)� =

⎣
⎢
⎢
⎢
⎡

0 𝑢𝑢(0) 𝑦𝑦(0)
1 𝑢𝑢(1) 𝑦𝑦(1)
2
⋮
𝑚𝑚

𝑢𝑢(2)
⋮

𝑢𝑢(𝑚𝑚)

𝑦𝑦(2)
⋮

𝑦𝑦(𝑚𝑚)⎦
⎥
⎥
⎥
⎤

 (3)

where 𝑚𝑚 is a number of available data points or the number of
iterations in the experiment of collecting the data.

The task is to identify (modeling) the given data by a
certain nth order difference equation that can describe as well
as possible the behavior of a discrete-time dynamic system
DDS

𝑦𝑦(𝑘𝑘) = 𝑓𝑓(𝑘𝑘,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2) … 𝑢𝑢(𝑘𝑘 − 𝑛𝑛𝑏𝑏),𝑦𝑦(𝑘𝑘 − 1),

 𝑦𝑦(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 3) … . 𝑦𝑦(𝑘𝑘 − 𝑛𝑛𝐷𝐷)) (4)

where 𝑓𝑓 is a composite function including of some elementary
functions such as trigonometric functions, power function,
etc. 𝑛𝑛𝑏𝑏 , and 𝑛𝑛𝐷𝐷 are the input and output orders respectively.

The GP solution is proposed to creates all types of
nonlinear models and not only models that are linear in
parameters. In order to restrict the evolved tree structures in a
GP algorithm only to these trees that represent linear in
parameter models, the MBFGP algorithm has to be adapted.
The MBFGP algorithm is made to have the ability to
decompose the tree into function terms. Each sub-tree, which
is rooted by a basis function node 𝑓𝑓 represents one of the
functional terms in the model. To avoid nonlinear in parameter
models, the parameters must be removed from the unfixed
terminal set; that is to contain only the
variables {𝑘𝑘, 𝑥𝑥1(𝑘𝑘), 𝑥𝑥2(𝑘𝑘) … . 𝑥𝑥𝑛𝑛(𝑘𝑘)}, where 𝑥𝑥𝑖𝑖(𝑘𝑘) denotes the
ith regressor variable.

The parameters of the model are represented by the fixed
numeric constant terminal node. The unfixed function set can
be used for selection from special model classes that are linear
in parameters. For a general linear in parameters model, the
unfixed function set can be as 𝐹𝐹 = {∗,/, ^2, ^3,√ , sin,
cos, exp, etc. }. However, if polynomial models are
considered then the set can be customizing to the set 𝐹𝐹 = {∗,/,
^2, ^3, . . }.

The MBFGP algorithm keeps evolving new generations
until the mean square error between the calculated and

measured output values reaches a prescribed minimum value,
i.e. the Rawfitness is given

 𝑅𝑅𝐷𝐷𝑁𝑁𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑁𝑁𝑅𝑅𝑅𝑅 =
1
𝑚𝑚
��𝑦𝑦(𝑘𝑘) −�𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝑋𝑋(𝑘𝑘))]

𝑁𝑁𝑏𝑏

𝑖𝑖=1

�

2 𝑚𝑚

𝑘𝑘=1

 (5)

where 𝑁𝑁𝑏𝑏 is the number of terms in the candidate model.
In order to simulate with the four parameter optimization

technique, a general procedure is augmented. The steps of this
procedure are:

- The number of the NC terminal nodes in the program
tree is counted and their location is recorded.

- The original values of the NC terminal nods are stored
in specified memory locations as a best set and the
corresponding fitness values of the individual are
calculated.

- Starting from original values, a vector of these values
is created so that the parameter optimizer can work on
them easily and clear the iteration counter, i.e. set j =
0.

- Using the selected technique to adjust the current
vector, and letting j = j + 1.

- The adjusted vector is inserted back in program tree
and the fitness is calculated for this adjusted vector.

- If the fitness of the new adjusted vector is less than
that found in the previous iterations then store this
vector in a specified memory as the best vector via all
iterations. Otherwise go to the next step.

- If the number of iterations reaches the maximum
number, the go to step 8, otherwise go to step 4.

- The best vector is inserted back in the program tree.
- The fitness value of the program tree is calculated.
- End.

V. RESULTS AND DISCUSSION
The identification of the nonlinear discrete dynamic

system will be demonstrated in two examples. This first
considers the solution based on standard GP and the enhanced
MBFGP for linear in parameter model. The second example
gives a comparison between the four parameter optimization
techniques for five different models.

Example 1

Consider the linear in parameter system

𝑦𝑦(𝑘𝑘) = 0.8𝑢𝑢2(𝑘𝑘 − 1) + 1.2𝑦𝑦(𝑘𝑘 − 1) − 0.9𝑦𝑦(𝑘𝑘 − 2) − 0.2

The task is to compare the identification performance between
the standard GP and MBFGP algorithms.

The measurements are generated by simulation using
uniform distributed random input in the range -5 to +5, and a
total of 50 points of measurements are taken. The standard GP
and the MBFGP algorithms are used. Each of these algorithms has
200 population size, ramped-half-and-half creation type with
20% creation probability and 5 maximum depth of creation, the
NCM method with -10 to +10 range and 0.001 resolution,
Tournament selection of size 4, and 300 generations termination
criterion. Also, both algorithms have the same maximum depth of

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 206

crossover equal to 8, 8% probability of swap and shrink
mutations, the feature of adding best solutions to a new
generation, and a number of 50 best solutions are used in Elitism.

Differences between the two algorithms include the use of
internal and external probability (4% each) of the inverse shrink
and branch mutations with MBFGP, while with standard GP a
single probability of 8% for the inverse shrink and branch
mutations. Furthermore, MBFGP has 8% probability of delete and
endowment operations that have included with standard GP.
Finally, only the MBFGP algorithm uses contribution operation of
3 generations frequency and an error reduction value of 0.001,
besides the margining operation in all generations for all
individuals.

The unfixed function set and terminal set of the MBFGP
algorithm are

𝐹𝐹 = {∗,/, 𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦}

and

 𝑇𝑇 = {ℛ,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘 − 2),

𝑦𝑦(𝑘𝑘 − 3),𝑝𝑝𝑛𝑛𝑁𝑁}

The equivalent function of the standard GP are

𝐹𝐹 = {−, +,∗,/, 𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦},

and

𝑇𝑇 = {ℛ,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦,

𝑦𝑦(𝑘𝑘 − 3),𝑝𝑝𝑛𝑛𝑁𝑁}

Both GP algorithms are simulated using C++ Language for 10
times for two cases. In the first case, the input data are noise free,
while in the second case a random uniform distribution in the
range of ±3% of the model output is added to the correct output
of the target model. The standard GP catches the perfect model 4
times in the first case and 3 times in the second case, while the
MBFGP catches correspondingly 6 and 5 perfect models.
Furthermore, the MBFGP has an average of 45 generations to
reach the perfect model against 120 generations for the standard
GP. In the second case, for the MBFGP, the evolved models of the
successful runs have relatively near exact model parameters due
to the injected noise. One of these five models is.

𝑦𝑦(𝑘𝑘) = 0.798𝑢𝑢2(𝑘𝑘 − 1) + 1.202y(k − 1) − 0.889y(k − 2)

−0.208

Accordingly, it can be concluded that the MBFGP
outperforms the standard GP.

Example 2

The MBFGP algorithm considered in the previous
example, will be used for identifying five different linear in
parameter models. For each of these models, the four
mentioned parameter optimization techniques will be merged
one by one to make a comparison between them. Table 1 lists
the main control parameters of all techniques.

TABLE 1 MAIN CONTROL PARAMETERS OF ALL
OPTIMIZERS

Optimizer
Type

Parameters of Optimizer

Numeric
Constant
Mutation

- Maximum number of mutation is 3
- Selecting range is 100% of the total range

that
 is used in method 1

- One of the four digits is selected to be
mutated

 by method 2 with uniform selection
probability

- Probability of applying each method is 0.5
- Number of iterations is 660

Gradient
Descent

- First learning rate is 0.1
- Second leaning rate is 0.4

- The probability to choose each learning is
0.5

- Number of iterations is 600
Simulating
Annealing

- Integer coding
- First initial value 𝑡𝑡0 = 1

- Second initial value 𝑡𝑡0 = 0.001
- Probability to choose initial value is 0.5

- Number of state transitions under each
control

 variable value is 10
- Cooling rate is 0.9

- Stopping criterion is 𝑡𝑡 < 0.001𝑡𝑡0; this
gives

 660 iterations in both initial values.
Genetic

Algorithm
- Integer coding

- Population size is 20
- Maximum number of iterations is 33

- Tournament selection with 𝑘𝑘 = 0.7
- Single crossover point

- Crossover rate 0.8
- Mutation rate 0.2

-Probability to mutate each parameters is
0.3

- Elitism strategy is used (retain one best
 solution)

The nonlinear discrete models are:

1. 𝑦𝑦(𝑘𝑘) = 0.8 𝑢𝑢2(𝑘𝑘 − 1) + 1.2 𝑦𝑦(𝑘𝑘 − 1) − 0.9 𝑦𝑦(𝑘𝑘 − 2) − 0.2

2. 𝑦𝑦(𝑘𝑘) = 0.3 𝑦𝑦(𝑘𝑘 − 1) + 0.6 𝑦𝑦(𝑘𝑘 − 2) − 0.4 𝑦𝑦(𝑘𝑘 − 1) +

 +0.3 𝑢𝑢2(𝑘𝑘 − 1) + 𝑢𝑢3(𝑘𝑘 − 1)

3. 𝑦𝑦(𝑘𝑘) = sin�𝑦𝑦(𝑘𝑘 − 1)�
+ 𝑢𝑢(𝑘𝑘 − 1) cos�𝑦𝑦(𝑘𝑘 − 1)𝑢𝑢(𝑘𝑘 − 1)� + 5 𝑢𝑢(𝑘𝑘
− 1)

4. 𝑦𝑦(𝑘𝑘) = 0.5 𝑢𝑢(𝑘𝑘 − 1) + 0.3 𝑦𝑦(𝑘𝑘 − 1) + 𝑦𝑦2(𝑘𝑘 − 1)

5. 𝑦𝑦(𝑘𝑘) = 𝑢𝑢(𝑘𝑘 − 1) + 𝑢𝑢(𝑘𝑘 − 1)𝑢𝑢(𝑘𝑘 − 2)𝑦𝑦(𝑘𝑘 − 2) + 𝑢𝑢(𝑘𝑘 − 1)𝑦𝑦(𝑘𝑘
− 2)

Except for the third model, the used MBFGP algorithm is the
same as that for example 1; however for the third model, the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 207

unfixed function set is 𝐹𝐹 = {∗,/,𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦, 𝑅𝑅𝑖𝑖𝑛𝑛, 𝑐𝑐𝑝𝑝𝑅𝑅}. In order
to make a fair comparison, each technique is applied to the
underlying candidate model, i.e. unless a zero mean square error
is reached, the stop of evaluation will be after ending the 660
iterations. Again, the simulation is performed for 10 independent
runs for each of the four optimizers. Table 2 depicts the
simulation results. Clearly, the GD technique is the worse among
the others, because it fails to find exact models for many cases
and for successful run, the average number of generations is very
high. Better performance has been obtained with the simulated
annealing technique as compared to gradient descent technique.
The NCM technique is the best choice among the others.
However, although the GA fails to find exact models in a small
number of runs, it has less total average number of generations
than for the NCM.

Example 3

To show the powerful of the proposed MBFGP, which is
enhanced by the numeric constant mutation for identifying a
complex discrete time dynamic system, the following system
is considered [12]:

𝑦𝑦(𝑘𝑘 + 1)

=
𝑦𝑦(𝑘𝑘)𝑦𝑦(𝑘𝑘 − 1)𝑦𝑦(𝑘𝑘 − 2)𝑢𝑢(𝑘𝑘 − 1)[𝑦𝑦(𝑘𝑘 − 2) − 1) + 𝑢𝑢(𝑘𝑘)

1 + 𝑦𝑦2(𝑘𝑘 − 1) + 𝑦𝑦2(𝑘𝑘 − 2)

The task is to identify optimally the structure and
parameters using both MBFGA algorithms. Both is equipped
with numeric constant mutation. Table 3 lists the parameters
and their values of the proposed enhanced MBFGA algorithm.
The values are assigned to obtain as much as accurate results,
which are defined by a minimum fitness value. The fitness is
the mean square error between the actual and the evolved
outputs of the system. Several trails have carried out before
the final assignment of these values

The unfixed function set and terminal set are as

𝐹𝐹 = {∗,/, ^,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦, 𝑅𝑅𝑖𝑖𝑛𝑛, 𝑐𝑐𝑝𝑝𝑅𝑅}

𝑇𝑇 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘 − 2), 𝑝𝑝𝑛𝑛𝑁𝑁}

TABLE 2 RESULTS OF EXAMPLE 2
Model

No.
Type of Parameter

Optimizer
No. of
successful

runs

No. of
Generations

1 NCM 10 43
SA 10 45
GD 6 244
GA 10 64

2 NCM 10 120
SA 9 151
GD 10 100
GA 9 97

3 NCM 10 114
SA 8 120
GD 6 114
GA 9 94

4 NCM 10 31
SA 10 96

GD 8 224
GA 9 38

5 NCM 10 59
SA 9 88
GD 7 286
GA 10 49

The numeric constant terminal nodes are in the range (-10,
+10) with a resolution of 10-5.

The input 𝑢𝑢(𝑘𝑘) is randomly generated in the range[−1,1],
and 200 data samples are generated. The first 100 data points
are used for the training and the other 100 data are used for
result validation.

The best evolved model with a fitness value equal
to 3.345 × 10−4 is the following model (in the model, for
simplicity it is written 𝑢𝑢,𝑢𝑢1,𝑦𝑦1 instead of 𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 −
1),𝑦𝑦(𝑘𝑘 − 1) and so on)

𝑦𝑦(𝑘𝑘 + 1) = 1.667𝑢𝑢 cos(𝑦𝑦1) cos(𝑦𝑦2) + 0.039195 sin(𝑢𝑢1
2𝑦𝑦1)

+ 0.1416535 sin(−𝑢𝑢1
2𝑦𝑦1𝑦𝑦2) + 0.01445𝑦𝑦1

− 0.23555 sin(𝑢𝑢)
+ 0.42263𝑢𝑢1𝑦𝑦1

2𝑦𝑦2 cos(𝑢𝑢1) sin(𝑢𝑢)
+ 0.02217𝑢𝑢4𝑐𝑐𝑝𝑝𝑅𝑅4(𝑦𝑦1)𝑐𝑐𝑝𝑝𝑅𝑅4(𝑦𝑦2)

Clearly, the evolved model contains only the operation,
terms and functions that are considered in the unfixed and
terminal nodes. In addition, it can be noted that the evolved
model is completely different than the original system. Figure
1 shows the actual and model outputs for validation data set,
and figure 2 shows the identification error for the best evolved
model by MBFGP algorithm. As it can be shown, the
identification error is of order 10-2, which indicates an
acceptable accuracy for such a complex system.

In fact, the simulation shows that the standard GP
algorithm provides also acceptable results, but with a little
larger identification error and undesirable nested mathematical
terms for the same training and validation data set.
Furthermore, the improvement of accuracy increases with
smaller resolution, and as the number of training data points
increases. However, the computation time will be increased
significantly.

Figure 1 Actual and model outputs for validation data set

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 208

Figure 2 Identification error

 TABLE 3 RESULTS OF EXAMPLE 3

MBFGP Control Parameters Values

Population Size 200

Terminal Criterion 100 generation

Creation Probability 20%

Criterion Type Ramped-Half-and-Half

Crossover Probability Internal 19%

External 13%

Max. Depth for Creation 5

Max. Depth for Crossover 8

Selection Type Tournament

Tournament Size 4

Swap Mutation Probability 8%

Shrink Mutation Probability 8%

Inverse Shrink Mutation
Probability

Internal 4%

External 4%

Branch Mutation Probability Internal 4%

External 4%

Probability of Delete
Operation

8%

Probability of Endowment
Operation

8%

Max. Number of Basis
Functions

7

Add Best Solutions to s New
Generation

Yes

Number of Best Solution
Used in Elitism

50

Use Contribution Operation Yes

Frequency of Contribution
Operation 𝐹𝐹𝑐𝑐𝑝𝑝

Each 3 generations

The error reduction Value 0.01

Use Merging Operation Yes, in all generations for all
individuals

Number of Iterations
Applying by Numeric
Constant Mutation

10 Iterations for each
individual in the population,
and 500 iterations for the
elected individuals by the
elitism operation

VI. CONCLUSIONS

As a central conclusion is the possible use of GP for
identifying a class of nonlinear discrete dynamic systems.
MBFGP algorithm shows better results than the standard GP
especially when data is incorporated with measurement noise.
In terms of the number of successful runs and required number
of generations, a comparison is carried out between four
parameter optimization techniques. The numeric constant
mutation technique seems to be the best choice. Perfect model
finding is achieved when the MBFGP algorithm is enhanced
with a numeric constant mutation technique for all linear in
parameter models. Furthermore, the MBFGP enhanced by
numeric constant mutation gives acceptable identification
results even with complex dynamic systems. Although the
identification process gives a different mathematical
expression as compared to the original model, the accuracy of
matching is better than with other methods. The accuracy of
the identification process can be controlled for a customize
computation time.

REFERENCES

[1] Isermann, Rolf Munchhof, Marco. 2011. Identification of
Dynamic Systems An Introduction with Applications,
Springer-Verlag Berlin Heidelberg

[2] Fatin Mohamed Ali. 2002. Neural Network Based
Identification Utilizing Genetic Algorithm. Comm. M.Sc.
Thesis. University of Technology, Baghdad

[3] Amir Gandmi, Amir H. Alavi, Conor Ryan (Ed). 2015.
Handbook of Genetic Programming Application. Springer
International Publishing , Swaziland

[4] Xiao-lei Yuan, Yan Bai, Ling Dong. 2008. SSCH:
Identification of Linear Time-Invariant, Nonlinear and
Time Varying Dynamic Systems Using Genetic
Programming. Evolutionary Computation, The IEEE
World Congress on Computation Intelligence, Honk Kong,
56-61.

[5] J. R. Koza. 1995. Survey of Genetic Algorithms and
Genetic Programming, Proceeding on 1995 WESCON,
Piscata way, NJ, IEEE 7-9 Nov. 589-594

[6] J. R. Koza 1992. Genetic Programming: On Programming
of Computers by Mean of Natural Selection. Cambridge,
MA, The MIT press

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 209

[7] A. Topchy, W. Punch. 2001. Faster Genetic Programming
based on local Gradient Search of Numeric Leaf Values,
GECCO-2001, 155-162, Morgan Kaufmann

[8] Rami A. Maher, Mohammed J. Mohammed 2013. An
enhanced Genetic Programming Algorithm for Optimal
Controller Design, Intelligent Control and Automation,
Published Online (http://www.scirp.org/journal/ica)

[9] Rami A. Maher 2013. Optimal Control Engineering with
MATLAB, Nova Science, NY

[10] L. Zhang, L. Wang 2003. Optimal Parameters Selection
for Simulate Annealing with Limited Computation Effort.
IEEE Conference, Neural Networks and Signal Processing,
Nanjing, China

[11] Michael Affenzeller, Stephan Winkler, Stefan Wagner,
Andreas Beham 2009. Genetic Algorithm and Genetic
Programming Modren Concepts and Practical
Applications, CRC Press Taylor & Francis, NY

[12] G.P. Liu, V. Kadirkamamathan, S.A. Billings 1998, On-
Line Identification of Nonlinear Systems Using Volterra
Polynomial Basis Function Neural Networks, Neural
Networks No. 11 p.p 1645-1657

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 210

