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Abstract— This paper introduces the application of the genetic 
programming to solve the identification problems of nonlinear 
discrete dynamic systems. The standard GP is enhanced first to be of 
a Multi basis function structure and then by a general parameter 
optimization technique to include one of four proposed techniques. 
The efficiency of finding the numeric constant node is significantly 
improved as compared to the traditional methods. The simulation 
procedure includes first a comparison between the enhanced GP by 
one of the parameter optimization techniques and the standard GP. 
Then after for six different models, a comparison between the four 
utilized techniques is performed. The comparison is made in terms of 
the number of runs require to find the perfect model, and the average 
number of generations for successful runs. Finally, a complicated 
nonlinear discrete is selected to show the powerful of the proposed 
algorithm.                                        
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I. INTRODUCTION 

Identification of a nonlinear discrete dynamic system, which 
is described by a difference nonlinear equation, represents the 
mathematical model in many digital control systems or nonlinear 
additive autoregressive models. Traditionally, there are various 
model–based as well as non-based-model methods that identify 
the mathematical model of these systems [1, 2].  Genetic 
programming has been used extensively for identifying 
continuous and rarely for discrete nonlinear systems [3, 4].   

Genetic programming GP suffers the weakness and difficulty 
in discovering useful numeric constants for the terminal nodes of 
its program trees [5]. The difficulty with numeric constants stems 
from their representation as tree nodes. The reproduction 
crossover and mutation operations affect only the structure of 
the tree and not the composition of the nodes. That is, the 
individual numeric constants are not affected by reproduction 
operations and hence cannot benefit from them.  
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There are two traditional ways of generating a new numeric 
constant, the arithmetic combination and the arithmetic genesis. 
Although these two ways are able to create a constant value, they 
require a tedious computation and in most cases, they are not 
enough efficient. Some of the early enhancements [6] consist of 
including a small number of numeric constants and/or 
ephemeral random constant ERC in the original terminal set. The 
ERC is helpful because it provides many different numeric 
constants in the initial generation. In spite of this, most problems 
require a solution that uses numeric constant other than that in 
the initial generation, and in turn; it requires evolving the tedious 
arithmetic combination. 

The demand for a more efficient GP is an important research 
area; for instance, numerous modifications of the basic GP 
parading are already known. Several researchers have 
considered GP augmented by hill climbing, simulated annealing 
and other stochastic techniques [7]. In this paper, four parameter 
techniques are considered to develop an enhanced GP, which is 
utilized to solve the identification problem of dynamic discrete 
nonlinear systems. Therefore, a general procedure for calling the 
desired technique is augmented with the standard GP to perform 
an enhanced genetic programming algorithm. In [8, 9] a multi-
base function genetic programming MBFGP algorithm shows 
excellent results in finding optimal controllers. Thus it is thought 
to experiment with for identification problems.  

 

II. MULTI BASIS FUNCTION GENETIC 
PROGRAMMING MBFGP 

This section is devoted to give a very brief discussion will 
of the used enhanced genetic programming algorithm, which 
will be used throughout this paper. There are five basic parts 
constituting the tree structures of the MBFGP. These are: 
i. Representation: The structures of program tree are 

composed of a random number of linear and/or nonlinear 
basis functions (terms), which are forced to be linear in 
parameters. The general tree structure of MPFGP is 
illustrated in Figure 8.1. As shown, the tree is divided into 
two main parts. The head part is constructed from 
independent (fixed) nodes set  Σ, 𝑓𝑓, or 𝑅𝑅, and the tail part is 
constructed from dependent (unfixed) nodes set. Figure 8.1 
represents an example of such a tree structure of the MBFGP, 
where three variables 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are related through the 
multiplication, division and power operations and a sine 
function.  

ii. Initial population of the random tree: It must be 
created by the syntactic rules of construction, and the value 
for each numeric constant terminal node is chosen randomly 
in a specified range. The end of the tree structure is bounded 
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by the parameter of the maximum creation depth, which is 
specified by the user.  

iii. Genetic operations: Two types of crossover operation 
are implemented within MBFGP structures. These are the 
internal operation which occurs in the tail part, and the 
external operation, which occurs in the head part. Four types 
of mutation operation are included. These are the swap, 
shrink, inverse shrink, and the branch operations, which are 
applied either to the head or tail parts of the parental tree 
structure or both.  

iv. Additional genetic operations: Besides the basic 
genetic operations, additional operations are used to vary or 
adapt the tree structures. Three operations are proposed, the 
endowment, delete, and merging operations, which make 
changes on the basis functions. In order to apply any of these 
operations, random selection of two basis function of the 
individual is performed. 

v. Enhancement operations: To enhance the 
performance of the MBFGP, five operations are proposed. 
These are the nested function, structure sorting, enrichment, 
numerical constant mutation, and contribution operations. 
These operations are utilized to fulfill different tasks. For 
example, the last operation is used to resolve the problem of 
poor diversity of the basis functions. 

The above-mentioned operations possess their special 
programs, which are integrated within the general GP 
algorithm; the reader can refer throughout the reference [9] for 
more and detailed information. The use of a certain operation 
may be either compulsory or problem dependent. Moreover, 
within the proposed MBFGP algorithm, the numerical method 
of the 4th order Runga-Kutta is applied to solve the dynamic 
system of the considered problem. 

III. PARAMETER OPTIMIZATION TECHNIQUES 
For the purpose of this paper, four known parameter 

optimization techniques are proposed. They are the numeric 
constant mutation NCM, the gradient descent GD, the 
simulated annealing SA, and the genetic algorithm GA. These 
techniques have different stochastic concepts for finding the 
numeric constant node values.  A brief explanation is given 
below. 

1. Numeric Constant Mutation  

     Numeric constant mutation: Initially, a certain range and 
resolution are specified for the NC terminal node ℛ values 
(say -10 to +10 and 10-3). In each individual, the number of 
mutated numeric constant node is chosen randomly in a 
certain range (say, 1 to 3) of cost surface dimension. Then 
with equal probability, the mutation process is performed in 
either of two methods. The first method, the new NC is 
randomly taken from a certain uniform distributed selection 
range, which is the old value plus or minus a certain 
percentage of the total allowed range. In the second method, a 
random selecting of the digit location is mutated in similar as 
with the first method [8]. 
 
 

2. Gradient Descent (GD) 

In an analogue way of updating the weights of a numeral 
network, terminal constants can be adjusted using gradient 
descent. However, various terminal constants are typically 
random within a GP tree and are rarely adjusted by gradient 
methods [7] because of the unavailability of derivatives and 
computational expense. In principle, the gradient descent 
search is applied to take a step on the cost surface from the 
current parameter θ. The gradient of the cost is found as a 
vector of partial derivative. At each generation all NC terminal 
nodes are updated several times using the following rule 

          𝜃𝜃𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜃𝜃𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 − 𝛼𝛼
𝜕𝜕
𝜕𝜕𝜃𝜃𝑘𝑘

�
1
𝑁𝑁�(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃)2

𝑁𝑁

𝑖𝑖=1

�              (1) 

where 𝛼𝛼 is a learning rate, 𝑥𝑥 is the vector of NC input 
values, 𝑦𝑦 is the output vector of NC values, and 𝑓𝑓 is a scalar 
unknown in advance function. However, finding the NC 
values is done by gradient descent during the same time the 
functional structures are evolved. Thus if 𝑛𝑛𝑗𝑗 (. ) denotes node 
functions, then 

    
𝜕𝜕𝑓𝑓(𝑛𝑛1(𝑛𝑛2(𝑛𝑛3(… ) … ). . ). )

𝜕𝜕𝜃𝜃𝑘𝑘
=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛1

𝜕𝜕𝑛𝑛1

𝜕𝜕𝑛𝑛2

𝜕𝜕𝑛𝑛2

𝜕𝜕𝑛𝑛1
…
𝜕𝜕𝑛𝑛𝑟𝑟(𝜃𝜃𝑘𝑘)
𝜕𝜕𝜃𝜃𝑘𝑘

     (2) 

Therefore, differentiation of the tree is simply reduced to the 
product of the node derivatives on the path, which starts at the 
given NC and ends at the root. 

3. Simulated Annealing (SA) 
SA is a stochastic global search optimization approach 

which does not require derivatives. The SA algorithm is 
inspired by a physical thermal process called annealing, which 
is used to obtain a minimum energy crystalline structure of the 
metal [10]. The SA algorithm as a numeric parameter 
optimizer has five basic features: 
i. The Solution representation: It represents a set of NC 

values that are optimized in a specified individual tree. 
Assuming a certain range, say -10 to +10 with a 
resolution 10-3 (it is 2001 code instances) and five 
decimal digits for each value. 

ii. The generation of a new solution: A new solution is 
generated by perturbing a random number of NC of the 
GP individual. The decimal code changes are performed 
by randomly adding value to a randomly selected position 
among the last three least significant decimal digits. This 
operation respects the upper and lower limits of the 
decimal code. 

iii. The acceptance function: Let  ∆𝑐𝑐 be the change of cost 
function between the current state and new state. The 
acceptance of new state is for ∆𝑐𝑐 < 0 or with a 
probability of 𝑁𝑁−∆𝑐𝑐 𝑡𝑡⁄ , where 𝑡𝑡 is control parameter 
(temperature). 

iv. Cooling schedule: The proposed SA applies a geometric 
Boltzmann annealing, which is simply be 
effective, 𝑡𝑡𝑘𝑘+1 = 𝜆𝜆 𝑡𝑡𝑘𝑘 , 𝑘𝑘 = 0,1,2.. where 𝜆𝜆 is a constant in 
the range 0.50-0.99. 

v. The stopping criterion: The optimization process will be 
stopped when the control parameter reaches a value less 
than a pre-specified value. 
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4. Genetic Algorithm (GA) 

The proposed strategy is very similar conceptually to 
gradient or SA technique. GA has the advantage of being 
less local than the gradient descent technique and able to 
produce better constant values even for that lie within the 
region within the search space, which are well far apart 
from present ones [11]. The GA includes the encoding of 
NC tree, the generation of random initial population, 
fitness evaluation, the selection of individuals to be 
continued in the next generation, and the genetic 
crossover and mutation operations. 

IV. PROBLEM STATEMENT AND GP SOLUTION 
Let us have a series of observed data 

points (𝑘𝑘,𝑢𝑢(𝑘𝑘),𝑦𝑦(𝑘𝑘)), collected from a one dimension 
discrete-time dynamic system that can be arranged in an array 
form as 

        𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷: = �𝑘𝑘,𝑢𝑢(𝑘𝑘),𝑦𝑦(𝑘𝑘)� =

⎣
⎢
⎢
⎢
⎡

0 𝑢𝑢(0) 𝑦𝑦(0)
1 𝑢𝑢(1) 𝑦𝑦(1)
2
⋮
𝑚𝑚

𝑢𝑢(2)
⋮

𝑢𝑢(𝑚𝑚)

𝑦𝑦(2)
⋮

𝑦𝑦(𝑚𝑚)⎦
⎥
⎥
⎥
⎤

           (3) 

where 𝑚𝑚 is a number of available data points or the number of 
iterations in the experiment of collecting the data. 

The task is to identify (modeling) the given data by a 
certain nth order difference equation that can describe as well 
as possible the behavior of a discrete-time dynamic system 
DDS 

𝑦𝑦(𝑘𝑘) = 𝑓𝑓(𝑘𝑘,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2) … 𝑢𝑢(𝑘𝑘 − 𝑛𝑛𝑏𝑏),𝑦𝑦(𝑘𝑘 − 1), 

                     𝑦𝑦(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 3) … . 𝑦𝑦(𝑘𝑘 − 𝑛𝑛𝐷𝐷))                       (4) 

where 𝑓𝑓 is a composite function including of some elementary 
functions such as trigonometric functions, power function, 
etc. 𝑛𝑛𝑏𝑏 , and 𝑛𝑛𝐷𝐷  are the input and output orders respectively. 

The GP solution is proposed to creates all types of 
nonlinear models and not only models that are linear in 
parameters. In order to restrict the evolved tree structures in a 
GP algorithm only to these trees that represent linear in 
parameter models, the MBFGP algorithm has to be adapted. 
The MBFGP algorithm is made to have the ability to 
decompose the tree into function terms. Each sub-tree, which 
is rooted by a basis function node 𝑓𝑓 represents one of the 
functional terms in the model. To avoid nonlinear in parameter 
models, the parameters must be removed from the unfixed 
terminal set; that is to contain only the 
variables {𝑘𝑘, 𝑥𝑥1(𝑘𝑘), 𝑥𝑥2(𝑘𝑘) … . 𝑥𝑥𝑛𝑛(𝑘𝑘)}, where 𝑥𝑥𝑖𝑖(𝑘𝑘) denotes the 
ith regressor variable. 

The parameters of the model are represented by the fixed 
numeric constant terminal node. The unfixed function set can 
be used for selection from special model classes that are linear 
in parameters. For a general linear in parameters model, the 
unfixed function set can be as  𝐹𝐹 = {∗,/, ^2, ^3,√ , sin,
cos,   exp, etc. }. However, if polynomial models are 
considered then the set can be customizing to the set 𝐹𝐹 = {∗,/,
^2, ^3, . . }.   

The MBFGP algorithm keeps evolving new generations 
until the mean square error between the calculated and 

measured output values reaches a prescribed minimum value, 
i.e. the Rawfitness is given 

       𝑅𝑅𝐷𝐷𝑁𝑁𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑁𝑁𝑅𝑅𝑅𝑅 =
1
𝑚𝑚
��𝑦𝑦(𝑘𝑘) −�𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝑋𝑋(𝑘𝑘))] 

𝑁𝑁𝑏𝑏

𝑖𝑖=1

�

2 𝑚𝑚

𝑘𝑘=1

        (5) 

where 𝑁𝑁𝑏𝑏  is the number of terms in the candidate model. 
In order to simulate with the four parameter optimization 

technique, a general procedure is augmented. The steps of this 
procedure are: 

- The number of the NC terminal nodes in the program 
tree is counted and their location is recorded. 

- The original values of the NC terminal nods are stored 
in specified memory locations as a best set and the 
corresponding fitness values of the individual are 
calculated. 

- Starting from original values, a vector of these values 
is created so that the parameter optimizer can work on 
them easily and clear the iteration counter, i.e. set j = 
0. 

- Using the selected technique to adjust the current 
vector, and letting j = j + 1. 

- The adjusted vector is inserted back in program tree 
and the fitness is calculated for this adjusted vector. 

- If the fitness of the new adjusted vector is less than 
that found in the previous iterations then store this 
vector in a specified memory as the best vector via all 
iterations. Otherwise go to the next step. 

- If the number of iterations reaches the maximum 
number, the go to step 8, otherwise go to step 4. 

- The best vector is inserted back in the program tree. 
- The fitness value of the program tree is calculated. 
- End. 

V. RESULTS AND DISCUSSION 
The identification of the nonlinear discrete dynamic 

system will be demonstrated in two examples. This first 
considers the solution based on standard GP and the enhanced 
MBFGP for linear in parameter model. The second example 
gives a comparison between the four parameter optimization 
techniques for five different models. 

Example 1 

Consider the linear in parameter system 

𝑦𝑦(𝑘𝑘) = 0.8𝑢𝑢2(𝑘𝑘 − 1) + 1.2𝑦𝑦(𝑘𝑘 − 1) − 0.9𝑦𝑦(𝑘𝑘 − 2) − 0.2 

The task is to compare the identification performance between 
the standard GP and MBFGP algorithms. 

The measurements are generated by simulation using 
uniform distributed random input in the range -5 to +5, and a 
total of 50 points of measurements are taken. The standard GP 
and the MBFGP algorithms are used. Each of these algorithms has 
200 population size, ramped-half-and-half creation type with 
20% creation probability and 5 maximum depth of creation, the 
NCM method with -10 to +10 range and 0.001 resolution, 
Tournament selection of size 4, and 300 generations termination 
criterion. Also, both algorithms have the same maximum depth of 
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crossover equal to 8, 8% probability of swap and shrink 
mutations, the feature of adding best solutions to a new 
generation, and a number of 50 best solutions are used in Elitism. 

Differences between the two algorithms include the use of 
internal and external probability (4% each) of the inverse shrink 
and branch mutations with MBFGP, while with standard GP a 
single probability of 8% for the inverse shrink and branch 
mutations. Furthermore, MBFGP has 8% probability of delete and 
endowment operations that have included with standard GP. 
Finally, only the MBFGP algorithm uses contribution operation of 
3 generations frequency and an error reduction value of 0.001, 
besides the margining operation in all generations for all 
individuals. 

The unfixed function set and terminal set of the MBFGP 
algorithm are 

𝐹𝐹 = {∗,/, 𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦} 

and 

 𝑇𝑇 = {ℛ,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘 − 2), 

𝑦𝑦(𝑘𝑘 − 3),𝑝𝑝𝑛𝑛𝑁𝑁} 

The equivalent function of the standard GP are 

𝐹𝐹 = {−, +,∗,/, 𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦}, 

and 

𝑇𝑇 = {ℛ,𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦, 

𝑦𝑦(𝑘𝑘 − 3),𝑝𝑝𝑛𝑛𝑁𝑁} 

Both GP algorithms are simulated using C++ Language for 10 
times for two cases. In the first case, the input data are noise free, 
while in the second case a random uniform distribution in the 
range of ±3% of the model output is added to the correct output 
of the target model. The standard GP catches the perfect model 4 
times in the first case and 3 times in the second case, while the 
MBFGP catches correspondingly 6 and 5 perfect models. 
Furthermore, the MBFGP has an average of 45 generations to 
reach the perfect model against 120 generations for the standard 
GP. In the second case, for the MBFGP, the evolved models of the 
successful runs have relatively near exact model parameters due 
to the injected noise. One of these five models is. 

𝑦𝑦(𝑘𝑘) = 0.798𝑢𝑢2(𝑘𝑘 − 1) + 1.202y(k − 1) − 0.889y(k − 2) 

−0.208 

Accordingly, it can be concluded that the MBFGP 
outperforms the standard GP. 

 

 

Example 2 

The MBFGP algorithm considered in the previous 
example, will be used for identifying five different linear in 
parameter models. For each of these models, the four 
mentioned parameter optimization techniques will be merged 
one by one to make a comparison between them. Table 1 lists 
the main control parameters of all techniques. 

 

TABLE 1 MAIN CONTROL PARAMETERS OF ALL 
OPTIMIZERS 

Optimizer 
Type 

Parameters of Optimizer 

Numeric 
Constant 
Mutation 

- Maximum number of mutation is 3 
- Selecting range is 100% of the total range 

that 
  is used in method 1 

- One of the four digits is selected to be 
mutated 

  by method 2 with uniform selection 
probability 

- Probability of applying each method is 0.5 
- Number of iterations is 660 

Gradient 
Descent 

- First learning rate is 0.1 
- Second leaning rate is 0.4 

- The probability to choose each learning is 
0.5 

- Number of iterations is 600 
Simulating 
Annealing 

- Integer coding 
- First initial value 𝑡𝑡0 = 1  

- Second initial value 𝑡𝑡0 = 0.001 
- Probability to choose initial value is 0.5 

- Number of state transitions under each 
control 

  variable value is 10 
- Cooling rate is 0.9 

- Stopping criterion is 𝑡𝑡 < 0.001𝑡𝑡0; this 
gives  

  660 iterations in both initial values. 
Genetic 

Algorithm 
- Integer coding 

- Population size is 20 
- Maximum number of iterations is 33 

- Tournament selection with 𝑘𝑘 = 0.7 
- Single crossover point 

- Crossover rate 0.8 
- Mutation rate 0.2 

-Probability to mutate each parameters is 
0.3 

- Elitism strategy is used (retain one best 
  solution)   

 

The nonlinear discrete models are: 

1.  𝑦𝑦(𝑘𝑘) = 0.8 𝑢𝑢2(𝑘𝑘 − 1) + 1.2 𝑦𝑦(𝑘𝑘 − 1) − 0.9 𝑦𝑦(𝑘𝑘 − 2) − 0.2 

2.  𝑦𝑦(𝑘𝑘) = 0.3 𝑦𝑦(𝑘𝑘 − 1) + 0.6 𝑦𝑦(𝑘𝑘 − 2) − 0.4 𝑦𝑦(𝑘𝑘 − 1) + 

                    +0.3 𝑢𝑢2(𝑘𝑘 − 1) + 𝑢𝑢3(𝑘𝑘 − 1) 

3.  𝑦𝑦(𝑘𝑘) = sin�𝑦𝑦(𝑘𝑘 − 1)�
+ 𝑢𝑢(𝑘𝑘 − 1) cos�𝑦𝑦(𝑘𝑘 − 1)𝑢𝑢(𝑘𝑘 − 1)� + 5 𝑢𝑢(𝑘𝑘
− 1) 

4.  𝑦𝑦(𝑘𝑘) = 0.5 𝑢𝑢(𝑘𝑘 − 1) + 0.3 𝑦𝑦(𝑘𝑘 − 1) + 𝑦𝑦2(𝑘𝑘 − 1) 

5.  𝑦𝑦(𝑘𝑘) = 𝑢𝑢(𝑘𝑘 − 1) + 𝑢𝑢(𝑘𝑘 − 1)𝑢𝑢(𝑘𝑘 − 2)𝑦𝑦(𝑘𝑘 − 2) + 𝑢𝑢(𝑘𝑘 − 1)𝑦𝑦(𝑘𝑘
− 2) 

Except for the third model, the used MBFGP algorithm is the 
same as that for example 1; however for the third model, the 
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unfixed function set is 𝐹𝐹 = {∗,/,𝑝𝑝𝑝𝑝𝑁𝑁,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦, 𝑅𝑅𝑖𝑖𝑛𝑛, 𝑐𝑐𝑝𝑝𝑅𝑅}. In order 
to make a fair comparison, each technique is applied to the 
underlying candidate model, i.e. unless a zero mean square error 
is reached, the stop of evaluation will be after ending the 660 
iterations. Again, the simulation is performed for 10 independent 
runs for each of the four optimizers. Table 2 depicts the 
simulation results. Clearly, the GD technique is the worse among 
the others, because it fails to find exact models for many cases 
and for successful run, the average number of generations is very 
high. Better performance has been obtained with the simulated 
annealing technique as compared to gradient descent technique. 
The NCM technique is the best choice among the others. 
However, although the GA fails to find exact models in a small 
number of runs, it has less total average number of generations 
than for the NCM.   

 

Example 3 

To show the powerful of the proposed MBFGP, which is 
enhanced by the numeric constant mutation for identifying a 
complex discrete time dynamic system, the following system 
is considered [12]: 

𝑦𝑦(𝑘𝑘 + 1)

=
𝑦𝑦(𝑘𝑘)𝑦𝑦(𝑘𝑘 − 1)𝑦𝑦(𝑘𝑘 − 2)𝑢𝑢(𝑘𝑘 − 1)[𝑦𝑦(𝑘𝑘 − 2) − 1) + 𝑢𝑢(𝑘𝑘)

1 + 𝑦𝑦2(𝑘𝑘 − 1) + 𝑦𝑦2(𝑘𝑘 − 2)
 

The task is to identify optimally the structure and 
parameters using both MBFGA algorithms. Both is equipped 
with numeric constant mutation. Table 3 lists the parameters 
and their values of the proposed enhanced MBFGA algorithm. 
The values are assigned to obtain as much as accurate results, 
which are defined by a minimum fitness value. The fitness is 
the mean square error between the actual and the evolved 
outputs of the system. Several trails have carried out before 
the final assignment of these values 

The unfixed function set and terminal set are as 

𝐹𝐹 = {∗,/, ^,−𝑢𝑢𝑛𝑛𝐷𝐷𝑟𝑟𝑦𝑦, 𝑅𝑅𝑖𝑖𝑛𝑛, 𝑐𝑐𝑝𝑝𝑅𝑅} 

𝑇𝑇 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘),𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘 − 2), 𝑝𝑝𝑛𝑛𝑁𝑁} 

TABLE 2 RESULTS OF EXAMPLE 2 
Model 

No. 
Type of Parameter 

Optimizer 
No. of 
successful 

runs 

No. of 
Generations 

1 NCM 10 43 
SA 10 45 
GD 6 244 
GA 10 64 

2 NCM 10 120 
SA 9 151 
GD 10 100 
GA 9 97 

3 NCM 10 114 
SA 8 120 
GD 6 114 
GA 9 94 

4 NCM 10 31 
SA 10 96 

GD 8 224 
GA 9 38 

5 NCM 10 59 
SA 9 88 
GD 7 286 
GA 10 49 

 

The numeric constant terminal nodes are in the range (-10, 
+10) with a resolution of 10-5.  

The input 𝑢𝑢(𝑘𝑘) is randomly generated in the range[−1,1], 
and 200 data samples are generated. The first 100 data points 
are used for the training and the other 100 data are used for 
result validation.  

The best evolved model with a fitness value equal 
to 3.345 × 10−4 is the following model (in the model, for 
simplicity it is written 𝑢𝑢,𝑢𝑢1,𝑦𝑦1  instead of  𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 −
1),𝑦𝑦(𝑘𝑘 − 1) and so on)  

𝑦𝑦(𝑘𝑘 + 1) = 1.667𝑢𝑢 cos(𝑦𝑦1) cos(𝑦𝑦2) + 0.039195 sin(𝑢𝑢1
2𝑦𝑦1)

+ 0.1416535 sin(−𝑢𝑢1
2𝑦𝑦1𝑦𝑦2) + 0.01445𝑦𝑦1

− 0.23555 sin(𝑢𝑢)
+ 0.42263𝑢𝑢1𝑦𝑦1

2𝑦𝑦2 cos(𝑢𝑢1) sin(𝑢𝑢)
+ 0.02217𝑢𝑢4𝑐𝑐𝑝𝑝𝑅𝑅4(𝑦𝑦1)𝑐𝑐𝑝𝑝𝑅𝑅4(𝑦𝑦2) 

Clearly, the evolved model contains only the operation, 
terms and functions that are considered in the unfixed and 
terminal nodes. In addition, it can be noted that the evolved 
model is completely different than the original system. Figure 
1 shows the actual and model outputs for validation data set, 
and figure 2 shows the identification error for the best evolved 
model by MBFGP algorithm. As it can be shown, the 
identification error is of order 10-2, which indicates an 
acceptable accuracy for such a complex system.  

In fact, the simulation shows that the standard GP 
algorithm provides also acceptable results, but with a little 
larger identification error and undesirable nested mathematical 
terms for the same training and validation data set. 
Furthermore, the improvement of accuracy increases with 
smaller resolution, and as the number of training data points 
increases. However, the computation time will be increased 
significantly.  

 
Figure 1 Actual and model outputs for validation data set 
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Figure 2 Identification error 

  

 

 TABLE 3 RESULTS OF EXAMPLE 3 

MBFGP Control Parameters Values 

Population Size 200 

Terminal Criterion 100 generation 

Creation Probability 20% 

Criterion Type Ramped-Half-and-Half 

Crossover Probability Internal 19% 

External 13% 

Max. Depth for Creation 5 

Max. Depth for Crossover 8 

Selection Type Tournament 

Tournament Size 4 

Swap Mutation Probability 8% 

Shrink Mutation Probability 8% 

Inverse Shrink Mutation 
Probability 

Internal 4% 

External 4% 

Branch Mutation Probability Internal 4% 

External 4% 

Probability of Delete 
Operation 

8% 

Probability of Endowment 
Operation 

8% 

Max. Number of Basis 
Functions 

7 

Add Best Solutions to s New 
Generation 

Yes 

Number of Best Solution 
Used in Elitism 

50 

Use Contribution Operation Yes 

Frequency of Contribution 
Operation  𝐹𝐹𝑐𝑐𝑝𝑝  

Each 3 generations 

The error reduction Value 0.01 

Use Merging Operation Yes, in all generations for all 
individuals 

Number of Iterations 
Applying by Numeric 
Constant Mutation 

10 Iterations for each 
individual in the population, 
and 500 iterations for the 
elected individuals by the 
elitism operation 

 

 

VI. CONCLUSIONS 

As a central conclusion is the possible use of GP for 
identifying a class of nonlinear discrete dynamic systems. 
MBFGP algorithm shows better results than the standard GP 
especially when data is incorporated with measurement noise. 
In terms of the number of successful runs and required number 
of generations, a comparison is carried out between four 
parameter optimization techniques. The numeric constant 
mutation technique seems to be the best choice. Perfect model 
finding is achieved when the MBFGP algorithm is enhanced 
with a numeric constant mutation technique for all linear in 
parameter models. Furthermore, the MBFGP enhanced by 
numeric constant mutation gives acceptable identification 
results even with complex dynamic systems. Although the 
identification process gives a different mathematical 
expression as compared to the original model, the accuracy of 
matching is better than with other methods. The accuracy of 
the identification process can be controlled for a customize 
computation time.  
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